Chern Character in Twisted K-theory: Equivariant and Holomorphic Cases
نویسنده
چکیده
It was argued in [25], [5] that in the presence of a nontrivial Bfield, D-brane charges in type IIB string theories are classified by twisted Ktheory. In [4], it was proved that twisted K-theory is canonically isomorphic to bundle gerbe K-theory, whose elements are ordinary Hilbert bundles on a principal projective unitary bundle, with an action of the bundle gerbe determined by the principal projective unitary bundle. The principal projective unitary bundle is in turn determined by the twist. This paper studies in detail the Chern-Weil representative of the Chern character of bundle gerbe K-theory that was introduced in [4], extending the construction to the equivariant and the holomorphic cases. Included is a discussion of interesting examples.
منابع مشابه
Equivariant K-theory, twisted Chern character, index pairings, Poincaré duality and orientation for the standard Podleś sphere
The noncommutative spin geometry of the standard Podleś sphere is analyzed and known results are extended by establishing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form of the distinguished covariant...
متن کاملHopf Algebra Equivariant Cyclic Cohomology, K-theory and a q-Index Formula
For an algebra B coming with an action of a Hopf algebra H and a twist automorphism, we introduce equivariant twisted cyclic cohomology. In the case when the twist is implemented by a modular element in H we establish the pairing between even equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that our cyclic coho...
متن کاملOn the noncommutative spin geometry of the standard Podleś sphere and index computations
The purpose of the paper is twofold: First, known results of the noncommutative spin geometry of the standard Podleś sphere are extended by discussing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form o...
متن کاملTwisted Entire Cyclic Cohomology, J-l-o Cocycles and Equivariant Spectral Triples
We study the “quantized calculus” corresponding to the algebraic ideas related to “twisted cyclic cohomology” introduced in [12]. With very similar definitions and techniques as those used in [9], we define and study “twisted entire cyclic cohomology” and the “twisted Chern character” associated with an appropriate operator theoretic data called “twisted spectral data”, which consists of a spec...
متن کاملChern character for twisted K-theory of orbifolds
For an orbifold X and α ∈ H(X,Z), we introduce the twisted cohomologyH c (X, α) and prove that the Connes-Chern character establishes an isomorphism between the twisted K-groups K α (X)⊗C and twisted cohomologyH c (X, α). This theorem, on the one hand, generalizes a classical result of Baum-Connes, Brylinski-Nistor, and others, that if X is an orbifold then the Chern character establishes an is...
متن کامل